Predicting the Quality of Process Model Matching
نویسندگان
چکیده
Process model matching refers to the task of creating correspondences among activities of different process models. This task is crucial whenever comparison and alignment of process models are called for. In recent years, there have been a few attempts to tackle process model matching. Yet, evaluating the obtained sets of correspondences reveals high variability in the results. Addressing this issue, we propose a method for predicting the quality of results derived by process model matchers. As such, prediction serves as a case-by-case decision making tool in estimating the amount of trust one should put into automatic matching. This paper proposes a model of prediction for process matching based on both process properties and preliminary match results.
منابع مشابه
A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model
The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملCar paint thickness control using artificial neural network and regression method
Struggling in world's competitive markets, industries are attempting to upgrade their technologies aiming at improving the quality and minimizing the waste and cutting the price. Industry tries to develop their technology in order to improve quality via proactive quality control. This paper studies the possible paint quality in order to reduce the defects through neural network techniques in au...
متن کاملPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کاملPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کامل